Multilayer perceptron

Jaime López - May 2021

Abstract: In this note a model and algorithms are deduced for the multilayer perceptron (MLP), a feedforward neural network. In the first section, MLP's structure is shown, including the algorithm to transform the input \bf{X} to the output $\hat{\bf{y}}$, i.e. the predicted values. In the second section, considerations to optimize MLP's parameters are defined. The backpropagation algorithm indicates how to adjust values for coefficients in each network connection. Finally, a gradient descent algorithm is developed to integrate forward and backpropagation operations.

Network Structure

¹ a

³ z

⁴ a

The multilayer perceptron is a network composed of *m* layers with fully connected nodes. The layers are specified by a vector in which each element indicates the number of nodes by layer. $d^{(1)}$ is the number of nodes for the input layer and $d^{(m)}$ is the number of nodes for the output layer.

$$
\mathbf{d} = [d^{(1)}, d^{(2)}, \dots, d^{(m)}]
$$

Each layer operates on inputs by these sequential functions:

$$
\mathbf{z}^{(l)} = \mathbf{a}^{(l-1)} \mathbf{W}^{(l)} + \mathbf{b}^{(l)}
$$

$$
\mathbf{a}^{(l)} = \phi^{(l)}(\mathbf{z}^{(l)})
$$

Notice that $\mathbf{a}^{(1)} = \mathbf{X}_{n \times d^{(1)}}$ and $\mathbf{\hat{y}}_{n \times d^{(m)}} = \mathbf{a}^{(m)}$. Besides that, $\mathbf{W}^{(l)}$ is a matrix of coefficients of size $d^{(l-1)} \times d^{(l)}$ and $b^{(l)}$ is a vector of constants of size $d^{(l)}$ for the linear function $\mathbf{z}^{(l)}$. $\mathbf{W}^{(l)}$, $\mathbf{b}^{(l)}$, and $\mathbf{z}^{(l)}$ are defined for $l = 2, \ldots, m$. $\phi^{(l)}$ is a non-linear function that transforms $z^{(l)}$. Algorithm [1](#page-0-0) shows the process to map $\hat{\mathbf{y}}$ from **X**.

Optimal parameters

In scalar notation, a cost function is defined:

$$
C = \frac{1}{nd^{(m)}} \sum_{i=1}^{d^{(m)}} \sum_{j=1}^{n} (\hat{y}_{i,j} - y_{i,j})^2
$$

The cost function in vectorial notation is presented below. Observe that \otimes is the element-wise product of matrices.

$$
C = \frac{1}{nd^{(m)}}\mathbf{1}_n^T[(\mathbf{\hat{y}} - \mathbf{y}) \otimes (\mathbf{\hat{y}} - \mathbf{y})]\mathbf{1}_{d^{(m)}}
$$

The optimal values of parameters **W** and **b** are those at the minimum of the function *C*

$$
\mathbf{J}_C=\mathbf{0}
$$

Where \mathbf{J}_C is the Jacobian of the function C

$$
\mathbf{J}_C = [\partial C/\partial \mathbf{W}, \partial C/\partial \mathbf{b}]
$$

For the last layer, applying the chain rule for derivatives, the elements of the Jacobian are:

$$
\frac{\partial C}{\partial \mathbf{W}^{(m)}} = \frac{\partial C}{\partial \mathbf{a}^{(m)}} \frac{\partial \mathbf{a}^{(m)}}{\partial \mathbf{z}^{(m)}} \frac{\mathbf{z}^{(m)}}{\partial \mathbf{W}^{(m)}}
$$

$$
\frac{\partial C}{\partial \mathbf{b}^{(m)}} = \frac{\partial C}{\partial \mathbf{a}^{(m)}} \frac{\partial \mathbf{a}^{(m)}}{\partial \mathbf{z}^{(m)}} \frac{\mathbf{z}^{(m)}}{\partial \mathbf{b}^{(m)}}
$$

In general, the elements for the Jacobian for other layers are

$$
\frac{\partial C}{\partial \mathbf{W}^{(l)}} = \frac{\partial C}{\partial \mathbf{a}^{(m)}} \frac{\partial \mathbf{a}^{(m)}}{\partial \mathbf{a}^{(m-1)}} \dots \frac{\partial \mathbf{a}^{(l+1)}}{\partial \mathbf{a}^{(l)}} \frac{\partial \mathbf{a}^{(l)}}{\partial \mathbf{z}^{(l)}} \frac{\mathbf{z}^{(l)}}{\partial \mathbf{W}^{(l)}}
$$

$$
\frac{\partial C}{\partial \mathbf{b}^{(l)}} = \frac{\partial C}{\partial \mathbf{a}^{(m)}} \frac{\partial \mathbf{a}^{(m)}}{\partial \mathbf{a}^{(m-1)}} \dots \frac{\partial \mathbf{a}^{(l+1)}}{\partial \mathbf{a}^{(l)}} \frac{\partial \mathbf{a}^{(l)}}{\partial \mathbf{z}^{(l)}} \frac{\mathbf{z}^{(l)}}{\partial \mathbf{b}^{(l)}}
$$

The derivatives of elements in the Jacobian are shown below. $\phi^{(l)}$ is the derivative of the function $\phi^{(l)}$.

$$
\frac{\partial C}{\partial \mathbf{a}^{(m)}} = \frac{2}{nd^{(m)}}(\mathbf{a}^{(m)} - \mathbf{y})
$$

$$
\frac{\partial \mathbf{a}^{(l)}}{\partial \mathbf{a}^{(l-1)}} = \frac{\partial \mathbf{a}^{(l)}}{\partial \mathbf{z}^{(l)}} \frac{\mathbf{z}^{(l)}}{\partial \mathbf{a}^{(l-1)}}
$$

$$
\frac{\partial \mathbf{a}^{(l)}}{\partial \mathbf{z}^{(l)}} = \phi^{(l)\prime}(\mathbf{z}^{(l)})
$$

$$
\frac{\partial \mathbf{z}^{(l)}}{\partial \mathbf{a}^{(l-1)}} = \mathbf{W}^{(l)}
$$

$$
\frac{\mathbf{z}^{(l)}}{\partial \mathbf{W}^{(l)}} = \mathbf{a}^{(l-1)}
$$

$$
\frac{\mathbf{z}^{(l)}}{\partial \mathbf{b}^{(l)}} = \mathbf{1}_{d^{l}}
$$

Algorithm [2](#page-2-0) shows how to update **W** and **b** departing from approximate values, using the derivatives of the cost function. In that, δ is a matrix that keeps the product of previous derivatives and the scalar η is the learning rate, used to regulate how fast values are updated. Besides that, vector **1** must have the same number of elements than $\mathbf{b}^{(l)}$.

Algorithm 2: Backpropagation **Data:** y, η (rate learning) **Result: W**, **b** $\mathbf{1} \ \ \delta \leftarrow \frac{2}{nd^{(m)}} (\mathbf{a}^{(m)} - \mathbf{y})$ **2** for $l \leftarrow m \dots 2$ do $\mathbf{3}$ $\delta \leftarrow \delta \otimes \phi^{(l)\prime}(\mathbf{z}^{(l)})$ $\mathbf{W}^{(l)} \leftarrow \mathbf{W}^{(l)} - \eta \mathbf{a}^{(l-1)T} \delta$ $\mathbf{b}^{(l)} \leftarrow \mathbf{b}^{(l)} - \eta \mathbf{1} \delta$ **⁶ if** *m >* 2 **then 7** $\delta \leftarrow \delta \mathbf{W}^{(l)T}$

Given forward and backpropagation algorithms, a gradient descent algorithm can adjust values of **W** and **b** near to the optimal values. Below is algorithm [3](#page-3-0) in which κ indicates the maximun number of iterations and ϵ represents the maximun accepted error. **rnd** is a function that returns matrices of random numbers.

Algorithm 3: Gradient descent

Data: X, **y**, *m*, **d**, *η* (rate learning), κ (maximun iterations), ϵ (maximun accepted error) **Result: W**, **b ¹ for** *l in 2 . . . m* **do 2 W**^(*l*) ← **rnd**()_{*d*(*l*_{1-1)×}*d*(*l*)} $\mathbf{a} \parallel \mathbf{b}^{(l)} \leftarrow \mathbf{rnd}()_{1 \times d^{(l)}}$ $\mathbf{z}^{(l)} \leftarrow \mathbf{0}_{1 \times d^{(l)}}$ $\mathbf{a}^{(l)} \leftarrow \mathbf{0}_{1 \times d^{(l)}}$ **⁶** *forward*(**X**) $\mathbf{z} \times \mathbf{z} + \mathbf{z}$ **⁸ repeat 9** backpropagate $(\mathbf{X}, \mathbf{y}, \eta)$ $\mathbf{10}$ **c** $\hat{\mathbf{y}} \leftarrow forward(\mathbf{X})$ 11 $C \leftarrow \frac{1}{nd^{(m)}} \mathbf{1}_n^T ((\mathbf{\hat{y}} - \mathbf{y}) \otimes (\mathbf{\hat{y}} - \mathbf{y})) \mathbf{1}_{d(m)}$ 12 $k \leftarrow k + 1$ **13** $\textbf{until } k \leq \kappa \wedge C > \epsilon$ **¹⁴ return W***,* **b**