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Multilayer perceptron
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Abstract: In this note a model and algorithms are deduced for the
multilayer perceptron (MLP), a feedforward neural network. In the
first section, MLP’s structure is shown, including the algorithm to
transform the input X to the output ¥, i.e. the predicted values. In
the second section, considerations to optimize MLP’s parameters
are defined. The backpropagation algorithm indicates how to ad-
just values for coefficients in each network connection. Finally, a
gradient descent algorithm is developed to integrate forward and
backpropagation operations.

Network Structure

The multilayer perceptron is a network composed of m layers with fully connected
nodes. The layers are specified by a vector in which each element indicates the
number of nodes by layer. dV) is the number of nodes for the input layer and
d™) is the number of nodes for the output layer.

d=[dV,d?,. .. d™)

Each layer operates on inputs by these sequential functions:
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Notice that a® = X, s0) and §,,, g0y = a(”™). Besides that, W) is a matrix
of coefficients of size d!=1) x d® and b®) is a vector of constants of size d) for
the linear function z). W, b and z are defined for I = 2,...,m. ¢ is a
non-linear function that transforms z(). Algorithm 1 shows the process to map
¥ from X.

Algorithm 1: Forward

Data: X
Result: §
a « X
for [+ 2...m do
zO — a(=DHWO L p®
L al) — ¢(l)(z(l))
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Optimal parameters

In scalar notation, a cost function is defined:
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The cost function in vectorial notation is presented below. Observe that ® is
the element-wise product of matrices.
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The optimal values of parameters W and b are those at the minimum of the
function C'

Jc=0

Where J¢ is the Jacobian of the function C'

Jo = [0C/OW, 8C /db

For the last layer, applying the chain rule for derivatives, the elements of the
Jacobian are:

oC oC dalm) gz(m)
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In general, the elements for the Jacobian for other layers are
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The derivatives of elements in the Jacobian are shown below. ¢ is the derivative

of the function ¢,
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Algorithm 2 shows how to update W and b departing from approximate values,
using the derivatives of the cost function. In that, § is a matrix that keeps the
product of previous derivatives and the scalar 7 is the learning rate, used to
regulate how fast values are updated. Besides that, vector 1 must have the same
number of elements than b().

Algorithm 2: Backpropagation

Data: y, n (rate learning)
Result: W, b
0+ saim (@) —y)
for[ < m...2do
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if m > 2 then
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Given forward and backpropagation algorithms, a gradient descent algorithm
can adjust values of W and b near to the optimal values. Below is algorithm
3 in which « indicates the maximun number of iterations and e represents the
maximun accepted error. rnd is a function that returns matrices of random
numbers.
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Algorithm 3: Gradient descent

Data: X, y, m, d, n (rate learning), x (maximun iterations), ¢ (maximun

accepted error)
Result: W, b
for [in 2...m do
WO rnd() yu-1) g
b(® rnd(),, ;0
7z 01y g0
a(l) — led(l)

forward(X)

k+1

repeat
backpropagate(
¥ <~ forward(
C e ot 1 (
k+—k+1

until k <k AC > €

return W, b
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