Multilayer perceptron

Jaime López - May 2021

Abstract: In this note a model and algorithms are deduced for the multilayer perceptron (MLP), a feedforward neural network. In the first section, MLP's structure is shown, including the algorithm to transform the input \mathbf{X} to the output $\hat{\mathbf{y}}$, i.e. the predicted values. In the second section, considerations to optimize MLP's parameters are defined. The backpropagation algorithm indicates how to adjust values for coefficients in each network connection. Finally, a gradient descent algorithm is developed to integrate forward and backpropagation operations.

Network Structure

The multilayer perceptron is a network composed of m layers with fully connected nodes. The layers are specified by a vector in which each element indicates the number of nodes by layer. $d^{(1)}$ is the number of nodes for the input layer and $d^{(m)}$ is the number of nodes for the output layer.

$$\mathbf{d} = [d^{(1)}, d^{(2)}, \dots, d^{(m)}]$$

Each layer operates on inputs by these sequential functions:

$$\mathbf{z}^{(l)} = \mathbf{a}^{(l-1)} \mathbf{W}^{(l)} + \mathbf{b}^{(l)}$$
$$\mathbf{a}^{(l)} = \phi^{(l)}(\mathbf{z}^{(l)})$$

Notice that $\mathbf{a}^{(1)} = \mathbf{X}_{n \times d^{(1)}}$ and $\mathbf{\hat{y}}_{n \times d^{(m)}} = \mathbf{a}^{(m)}$. Besides that, $\mathbf{W}^{(l)}$ is a matrix of coefficients of size $d^{(l-1)} \times d^{(l)}$ and $b^{(l)}$ is a vector of constants of size $d^{(l)}$ for the linear function $\mathbf{z}^{(l)}$. $\mathbf{W}^{(l)}$, $\mathbf{b}^{(l)}$, and $\mathbf{z}^{(l)}$ are defined for $l = 2, \ldots, m. \phi^{(l)}$ is a non-linear function that transforms $\mathbf{z}^{(l)}$. Algorithm 1 shows the process to map $\mathbf{\hat{y}}$ from \mathbf{X} .

Algorithm 1: Forward
Data: X
Result: ŷ
$\mathbf{a}^{(1)} \leftarrow \mathbf{X}$
for $l \leftarrow 2 \dots m$ do
$\mathbf{z}^{(l)} \leftarrow \mathbf{a}^{(l-1)} \mathbf{W}^{(l)} + \mathbf{b}^{(l)}$
$\mathbf{a}^{(l)} \leftarrow \phi^{(l)}(\mathbf{z}^{(l)})$
$\mathbf{\hat{y}} \leftarrow \mathbf{a}^{(m)}$

Optimal parameters

In scalar notation, a cost function is defined:

$$C = \frac{1}{nd^{(m)}} \sum_{i=1}^{d^{(m)}} \sum_{j=1}^{n} (\hat{y}_{i,j} - y_{i,j})^2$$

The cost function in vectorial notation is presented below. Observe that \otimes is the element-wise product of matrices.

$$C = \frac{1}{nd^{(m)}} \mathbf{1}_n^T [(\mathbf{\hat{y}} - \mathbf{y}) \otimes (\mathbf{\hat{y}} - \mathbf{y})] \mathbf{1}_{d^{(m)}}$$

The optimal values of parameters ${\bf W}$ and ${\bf b}$ are those at the minimum of the function C

$$\mathbf{J}_C = \mathbf{0}$$

Where \mathbf{J}_C is the Jacobian of the function C

$$\mathbf{J}_C = [\partial C / \partial \mathbf{W}, \partial C / \partial \mathbf{b}]$$

For the last layer, applying the chain rule for derivatives, the elements of the Jacobian are:

$$\frac{\partial C}{\partial \mathbf{W}^{(m)}} = \frac{\partial C}{\partial \mathbf{a}^{(m)}} \frac{\partial \mathbf{a}^{(m)}}{\partial \mathbf{z}^{(m)}} \frac{\mathbf{z}^{(m)}}{\partial \mathbf{W}^{(m)}}$$
$$\frac{\partial C}{\partial \mathbf{b}^{(m)}} = \frac{\partial C}{\partial \mathbf{a}^{(m)}} \frac{\partial \mathbf{a}^{(m)}}{\partial \mathbf{z}^{(m)}} \frac{\mathbf{z}^{(m)}}{\partial \mathbf{b}^{(m)}}$$

In general, the elements for the Jacobian for other layers are

$$\frac{\partial C}{\partial \mathbf{W}^{(l)}} = \frac{\partial C}{\partial \mathbf{a}^{(m)}} \frac{\partial \mathbf{a}^{(m)}}{\partial \mathbf{a}^{(m-1)}} \dots \frac{\partial \mathbf{a}^{(l+1)}}{\partial \mathbf{a}^{(l)}} \frac{\partial \mathbf{a}^{(l)}}{\partial \mathbf{z}^{(l)}} \frac{\mathbf{z}^{(l)}}{\partial \mathbf{W}^{(l)}}$$
$$\frac{\partial C}{\partial \mathbf{b}^{(l)}} = \frac{\partial C}{\partial \mathbf{a}^{(m)}} \frac{\partial \mathbf{a}^{(m)}}{\partial \mathbf{a}^{(m-1)}} \dots \frac{\partial \mathbf{a}^{(l+1)}}{\partial \mathbf{a}^{(l)}} \frac{\partial \mathbf{a}^{(l)}}{\partial \mathbf{z}^{(l)}} \frac{\mathbf{z}^{(l)}}{\partial \mathbf{b}^{(l)}}$$

The derivatives of elements in the Jacobian are shown below. $\phi^{(l)}$ is the derivative of the function $\phi^{(l)}$.

$$\frac{\partial C}{\partial \mathbf{a}^{(m)}} = \frac{2}{nd^{(m)}} (\mathbf{a}^{(m)} - \mathbf{y})$$

$$\frac{\partial \mathbf{a}^{(l)}}{\partial \mathbf{a}^{(l-1)}} = \frac{\partial \mathbf{a}^{(l)}}{\partial \mathbf{z}^{(l)}} \frac{\mathbf{z}^{(l)}}{\partial \mathbf{a}^{(l-1)}}$$
$$\frac{\partial \mathbf{a}^{(l)}}{\partial \mathbf{z}^{(l)}} = \phi^{(l)\prime}(\mathbf{z}^{(l)})$$
$$\frac{\partial \mathbf{z}^{(l)}}{\partial \mathbf{a}^{(l-1)}} = \mathbf{W}^{(l)}$$
$$\frac{\mathbf{z}^{(l)}}{\partial \mathbf{W}^{(l)}} = \mathbf{a}^{(l-1)}$$
$$\frac{\mathbf{z}^{(l)}}{\partial \mathbf{b}^{(l)}} = \mathbf{1}_{d^{l}}$$

Algorithm 2 shows how to update **W** and **b** departing from approximate values, using the derivatives of the cost function. In that, δ is a matrix that keeps the product of previous derivatives and the scalar η is the learning rate, used to regulate how fast values are updated. Besides that, vector **1** must have the same number of elements than $\mathbf{b}^{(l)}$.

Algorithm 2: BackpropagationData: y, η (rate learning)Result: W, b1 $\delta \leftarrow \frac{2}{nd^{(m)}} (\mathbf{a}^{(m)} - \mathbf{y})$ 2 for $l \leftarrow m \dots 2$ do3 $\delta \leftarrow \delta \otimes \phi^{(l)'}(\mathbf{z}^{(l)})$ 4 $\mathbf{W}^{(l)} \leftarrow \mathbf{W}^{(l)} - \eta \mathbf{a}^{(l-1)T} \delta$ 5 $\mathbf{b}^{(l)} \leftarrow \mathbf{b}^{(l)} - \eta \mathbf{1} \delta$ 6 if m > 2 then

7 $\[\delta \leftarrow \delta \mathbf{W}^{(l)T} \]$

Given forward and backpropagation algorithms, a gradient descent algorithm can adjust values of \mathbf{W} and \mathbf{b} near to the optimal values. Below is algorithm 3 in which κ indicates the maximum number of iterations and ϵ represents the maximum accepted error. **rnd** is a function that returns matrices of random numbers.

Algorithm 3: Gradient descent

Data: X, y, m, d, η (rate learning), κ (maximum iterations), ϵ (maximum accepted error) Result: W, b 1 for l in $2 \dots m$ do $\mathbf{W}^{(l)} \leftarrow \mathbf{rnd}()_{d^{(l-1)} \times d^{(l)}}$ $\mathbf{2}$ $\mathbf{b}^{(l)} \leftarrow \mathbf{rnd}()_{1 \times d^{(l)}}$ 3 $\mathbf{z}^{(l)} \gets \mathbf{0}_{1 \times d^{(l)}}$ $\mathbf{4}$ $\mathbf{a}^{(l)} \gets \mathbf{0}_{1 \times d^{(l)}}$ $\mathbf{5}$ 6 $forward(\mathbf{X})$ $\mathbf{7} \ \mathbf{k} \leftarrow 1$ s repeat $backpropagate(\mathbf{X}, \mathbf{y}, \eta)$ 9
$$\begin{split} \hat{\mathbf{y}} &\leftarrow forward(\mathbf{X}) \\ C &\leftarrow \frac{1}{nd^{(m)}} \mathbf{1}_n^T((\hat{\mathbf{y}} - \mathbf{y}) \otimes (\hat{\mathbf{y}} - \mathbf{y})) \mathbf{1}_{d(m)} \\ \mathbf{k} &\leftarrow \mathbf{k} + 1 \end{split}$$
10 11 1213 until $k \leq \kappa \wedge C > \epsilon$ 14 return W, b