
Multilayer perceptron
Jaime López - May 2021

Abstract: In this note a model and algorithms are deduced for the
multilayer perceptron (MLP), a feedforward neural network. In the
first section, MLP’s structure is shown, including the algorithm to
transform the input X to the output ŷ, i.e. the predicted values. In
the second section, considerations to optimize MLP’s parameters
are defined. The backpropagation algorithm indicates how to ad-
just values for coefficients in each network connection. Finally, a
gradient descent algorithm is developed to integrate forward and
backpropagation operations.

Network Structure
The multilayer perceptron is a network composed of m layers with fully connected
nodes. The layers are specified by a vector in which each element indicates the
number of nodes by layer. d(1) is the number of nodes for the input layer and
d(m) is the number of nodes for the output layer.

d = [d(1), d(2), . . . , d(m)]

Each layer operates on inputs by these sequential functions:

z(l) = a(l−1)W(l) + b(l)

a(l) = ϕ(l)(z(l))

Notice that a(1) = Xn×d(1) and ŷn×d(m) = a(m). Besides that, W(l) is a matrix
of coefficients of size d(l−1) × d(l) and b(l) is a vector of constants of size d(l) for
the linear function z(l). W(l), b(l), and z(l) are defined for l = 2, . . . , m. ϕ(l) is a
non-linear function that transforms z(l). Algorithm 1 shows the process to map
ŷ from X.

Algorithm 1: Forward
Data: X
Result: ŷ

1 a(1) ← X
2 for l← 2 . . . m do
3 z(l) ← a(l−1)W(l) + b(l)

4 a(l) ← ϕ(l)(z(l))
5 ŷ← a(m)

1



Optimal parameters
In scalar notation, a cost function is defined:

C = 1
nd(m)

d(m)∑
i=1

n∑
j=1

(ŷi,j − yi,j)2

The cost function in vectorial notation is presented below. Observe that ⊗ is
the element-wise product of matrices.

C = 1
nd(m) 1T

n [(ŷ− y)⊗ (ŷ− y)]1d(m)

The optimal values of parameters W and b are those at the minimum of the
function C

JC = 0

Where JC is the Jacobian of the function C

JC = [∂C/∂W, ∂C/∂b]

For the last layer, applying the chain rule for derivatives, the elements of the
Jacobian are:

∂C

∂W(m) = ∂C

∂a(m)
∂a(m)

∂z(m)
z(m)

∂W(m)

∂C

∂b(m) = ∂C

∂a(m)
∂a(m)

∂z(m)
z(m)

∂b(m)

In general, the elements for the Jacobian for other layers are

∂C

∂W(l) = ∂C

∂a(m)
∂a(m)

∂a(m−1) . . .
∂a(l+1)

∂a(l)
∂a(l)

∂z(l)
z(l)

∂W(l)

∂C

∂b(l) = ∂C

∂a(m)
∂a(m)

∂a(m−1) . . .
∂a(l+1)

∂a(l)
∂a(l)

∂z(l)
z(l)

∂b(l)

The derivatives of elements in the Jacobian are shown below. ϕ(l)′ is the derivative
of the function ϕ(l).

∂C

∂a(m) = 2
nd(m) (a(m) − y)

2



∂a(l)

∂a(l−1) = ∂a(l)

∂z(l)
z(l)

∂a(l−1))

∂a(l)

∂z(l) = ϕ(l)′(z(l))

∂z(l)

∂a(l−1) = W(l)

z(l)

∂W(l) = a(l−1)

z(l)

∂b(l) = 1dl

Algorithm 2 shows how to update W and b departing from approximate values,
using the derivatives of the cost function. In that, δ is a matrix that keeps the
product of previous derivatives and the scalar η is the learning rate, used to
regulate how fast values are updated. Besides that, vector 1 must have the same
number of elements than b(l).

Algorithm 2: Backpropagation
Data: y, η (rate learning)
Result: W, b

1 δ ← 2
nd(m) (a(m) − y)

2 for l← m . . . 2 do
3 δ ← δ ⊗ ϕ(l)′(z(l))
4 W(l) ←W(l) − ηa(l−1)T δ

5 b(l) ← b(l) − η1δ
6 if m > 2 then
7 δ ← δW(l)T

Given forward and backpropagation algorithms, a gradient descent algorithm
can adjust values of W and b near to the optimal values. Below is algorithm
3 in which κ indicates the maximun number of iterations and ϵ represents the
maximun accepted error. rnd is a function that returns matrices of random
numbers.

3



Algorithm 3: Gradient descent
Data: X, y, m, d, η (rate learning), κ (maximun iterations), ϵ (maximun

accepted error)
Result: W, b

1 for l in 2 . . . m do
2 W(l) ← rnd()d(l−1)×d(l)

3 b(l) ← rnd()1×d(l)

4 z(l) ← 01×d(l)

5 a(l) ← 01×d(l)

6 forward(X)
7 k← 1
8 repeat
9 backpropagate(X, y, η)

10 ŷ← forward(X)
11 C ← 1

nd(m) 1T
n ((ŷ− y)⊗ (ŷ− y))1d(m)

12 k← k + 1
13 until k ≤ κ ∧ C > ϵ
14 return W, b

4


	Multilayer perceptron
	Network Structure
	Optimal parameters


